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Abstract

A new algorithm is presented for increasing the accuracy of subpixel

eentroid eJimation of (nearly) point target images in cases where the

signal-to-noise ratio is low and the signal amplitude and shape vary from

frame to frame. In the algorithm, the centroid is calculated over a data
window that is matched in width to the image distribution. Fourier

analysis is used to explain the dependency of the centroid estimate

on the size of the data window, and simulation and experimental

results are presented which demonstrate the effects of window size for

two different noise models. The effects of window shape have also
been investigated for uniform and Gaussian-shaped windows. The

new algorithm has been developed to improve the dynamic range of a

close-range photogrammetric tracking system that provides feedback for

control of a large gap magnetic suspension system (LGMSS).

Introduction

Centroid-estimation algorithms have long been

used in digital imaging to locate target images to

subpixel accuracies. Applications of centroid esti-

mation include star tracking (ref. 1), point and edge

detection for machine vision (ref. 2), close-rangc

photogrammetry (ref. 3), and motion analysis. Thc
effects of sampling and noise on the accuracy of the

centroid estimate for point source images, images of

extended sources, and edge detection have been ana-

lyzed previously and documented by several authors

(refs. 4 to 8). The systematic errors due to under-
sampling that have been described for centroid esti-

mation are common to all interpolation algorithms
and have been analyzed from the point of view of

performing image reconstruction (refs. 9 and 10). In

these previous analyses, experimental approaches as

well as analytical approaches based on Fourier tech-

niques have been used to quantify the errors due to

noise, quantization, and sample spacing. To date,
the effect of window size on the accuracy of subpixel
centroid estimation has been limited to a qualitative

analysis derived from experiments that measured the
error in centroid estimation as a function of different

N-point algorithms (ref. 4).

In this paper, Fourier techniques arc used to an-

alyze the dependency of the systematic error on win-
dow size. In addition, the effects of window size

and shape on subpixel centroid-estimation accuracy

in the presence of noise are studied. It is shown that

there can be an advantage to using a shaped win-
dow for centroid estimation of point target images for

signals that vary in amplitude and width, provided
the pixel-to-pixel noise is independent of signal am-

plitude. A brief review of the effects of the optical

point spread function (PSF), target size, and sam-

ple spacing on systematic error is provided in order

to compare and contrast these effects with those at-
tributable to the data window. Quantization effects,

howcver, are not addressed ill this paper.

In many applications involving centroid estima-

tion, tile signal shape and amplitude are either con-
trollable or fixed. In these cases, the optimum sam-

ple spacing and window size relative to the target
image distribution are known a priori, and a correc-

tion can be applied for systematic errors (ref. 7). In

other applications where the noise is small or the ira-

age is averaged over several frames, a larger window

(relative to the distribution) can bc used in the cen-
troid calculation. This eliminates systematic errors

arising because of truncation of the signal. In the

application discussed in this paper, centroid estima-
tion is used to locate images of point targets along a

linear charge-coupled device (CCD) detector, where

the signal-to-noise ratio is small and, because the tar-

gets are moving, the (one-dimensional) images vary
in size and amplitude. For these reasons, it is not

possible to apply a correction for the systematic cr-
rors or to calculate the centroid using a large fixed
data window.

The application discussed herein is thc optical

measurement system (OMS) for the large gap mag-
netic suspension system (LGMSS) (fig. 1). In the

OMS, small infrared light-emitting diode (LED) tar-

gets have been embedded in the top surface of a

rigid cylindrically shaped element that contains a
permanent magnet core. The element is magnetically

levitated above a planar array of electromagnets.
Sixteen linear CCD cameras arranged in pairs are

located symmetrically about and above the levitated

cylinder. A total of eight targets are located along
the top surface of the cylinder (fig. 2), and the tar-

gets are multiplexed in time for target identification.

Triangulation techniques are used to determine the



positionandattitudeof the levitated cylinder from
the locations of the projected target images in the

16 cameras. The position and attitude information

is supplied to the electromagnet controller to stabi-
lize levitation of tile cylinder and to control motion

in six degrees of freedom.

The position and attitude of the cylinder are de-

termined using weighted least squares. An estimate

of the error in each computed centroid value is passed
along with the centroid value and is used to estab-

lish a weighting factor for the particular camera mea-

surement. In order to achieve the required accuracy
in the estimate of position and attitude, it is neces-

sary to locate the centroids of at least 6 of the target
images to l/t5 of a pixel in a minimum of 12 of the

16 cameras. As the cylinder, and hence each tar-

get, moves over the field of view, both the amplitude

and the width of the target images vary (fig. 3). If
the centroid location of a target image is determined

with a fixed window size (which is the same for all

16 cameras), and the window size is optimum for
those image distributions falling in the midrange of

possible values, then as the target images vary in am-
plitude and width, the error in the centroid estimate

grows for those images for which the distribution falls

outside the midrange. Thus, with a fixed window

size, the accuracy of the centroid estimate falls off be-

cause of noise or systematic error, and the accuracy

of the position and attitude estimate correspondingly
decreases.

In order to increase the dynamic range of the

system, an algorithm has been developed to adjust
the width of the centroid window as the light in-

tensity distribution of the image varies. This algo-
rithm provides the minimum error in centroid esti-

mation over the maximum range of signal amplitude
and shape. This paper analyzes the dependency of
systematic and noise-induced errors on the size and

shape of the data window. Experimental results are

presented and compared with the results of numerical
simulations.

The following analysis is limited to one spatial di-

mension. It is assumed that the PSF of the imaging

optics can be approximated by a Gaussian function.
Because a two-dimensional Gaussian function is sep-
arable in x and y, the results of the one-dimensional

analysis can readily bc extended to two dimensions.

Symbols and Abbreviations

b half-width of Gaussian distribution

used to simulate the optical point

spread of the imaging optics

comb(x/xs) sampling function

f(x)

F([)

_(_)

FRw

Fsw(_)

fsw( )

H(_)

N

PSF(x)

T(_)

x

Xc

Xp

x8

_sw

_,_,P

Abbreviations:

CCD

LED

rms

SNR

light intensity distribution of one-

dimensional target image

Fourier transform of f(x)

= F(_)R(_)

=FR*W

Fourier transform of fsw (x)

first derivative of FSW(_ ) with
respect to

sampled and windowed version of

f(x)

one-dimensional light intensity
distribution of target located at Xo

general function of

number of pixels corresponding to
half the window width

point spread flmction of imaging
optics

Fourier transform of r(x)

pixel response function

general function of

Fourier transform of w(x)

window function

spatial variable

centroid of continuous one-

dimensional light intensity
distribution

amount by which f(x) is shifted
with respect to the sampling grid

pixel location of the peak signal

sample spacing

centroid of fsw (x)

systematic error, Yc- _SW

variables of integration

charge-coupled device

light-emitting diode

root-mean-square :

Peak signal
---- Standard deviation of background signal

A prime on a symbol denotes the first derivative.

An asterisk used as an operational sign denotes con-
volution of the quantities.
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Effect of Window Size on Systematic
Error

The objectiveis to producea minimumerror
estimateof the centroidof a one-dimensionallight
intensity distributioncorrespondingto a (nearly)
point target image. The target imagewill have
beensampledand only a portion of the sampled
distribution(thosepointslying within thewindow)
will havebeenusedin thecalculation.Bydefinition,
thecentroidof thecontinuousone-dimensionallight
intensitydistributionisgivenby

xf(x) dx
oc (1)

where 2 is the centroid, f(x) is the light intensity

distribution of the image, and x is the position. This

equation may be expressed in terms of F(_), the

Fourier transform of f(x), as

set that is of infinite extent. In order to reproduce the

real data set, which is of limited extent, the sampled

function is multiplied by a window function w(x) of
finite width. If the sampled and windowed function

is defined as fgw(x), then

where

/1 \

\Xs /
(4)

where the asterisk denotes the convolution (pp. 284

and 285 of ref. 11). From equations (3) and (4) it
follows that the Fourier transform of fsw (x) is

where

and

= [ dF(_)/d_ ] (2)
[-2rriF(_) J_=0 Thus,

FF(_) = f(x) exp(-27ri_x) dx (3)
(3O

The effect of using only a portion of the image

distribution, that is, of placing a window about the

distribution, is to spread the energy in the spectrum

of F(() into higher frequencies. This effect is shown

in figure 4. When the image distribution is both
windowed and sampled, as it is in practice, the width

of the window relative to the width of f(x) and the

sample spacing is important.

In a CCD array, an image is sampled at discrete

intervals with an array of detectors or pixels. Each

pixel has a response that is spatially distributed over
the width of the pixel. If f(x) is the function that

represents the continuous light intensity distribution

of the image, then sampling with a CCD array can
be modelled mathematically as a convolution of f(x)

with a function r(x), which represents the spatial

response of each pixel, followed by a nmltiplication
of the resulting product with the sampling function

comb(x/xs), where

1 Oo

=
Xs

n_--O0

FSW = F * comb * IW

= ([' * W) * comb

and xs is the sample spacing of the pixels. This con-

volution and multiplication results in a sampled data

comb = n

= FR

Fsw(¢)= F_, FRw (5)

where

FRw = F • w (6)
Equation (5) shows that the spectrum of the

sampled and windowed function is the sum of the

individual spectra FRW repeated at intervals of

1/Xs. Figure 5 shows a representative sampled and
windowed function fsw(x) and the corresponding

Fourier transform FSw(_ ). As for the continuous
distribution case, placing a window about the imagc

distribution can broaden FRW. When the image is

both windowed and sampled this spread can result
in energy spillover from neighboring transforms. If
the window width is too small relative to the width

of the signal and the sample spacing, then system-
atic error is introduced into the centroid estimate as

energy from higher orders spills into FRw(O ).

Before the specific form of the error introduced

by the data window is discussed, the effects of the

optical PSF, pixel response function, and target size

are briefly reviewed in order to distinguish between
those errors that are due to undersampling and those
errors that are due to the finite extcnt of the data.

A Review of Effects of Optical PSF, Pixel

Response Function, and Target Size

As has been shown previously (refs. 4, 7, 9,

and 10), the form of the subpixel error in centroid

3



estimationandimagereconstructiondueto under-
samplingis a sinusoidalfunctionof the positionof
the "true" centroidor imagelocationwith respectto
thesamplegrid (fig.6). Tilemagnitudeof thiserror
is a functionof thewidthsof theopticalPSF,pixel
responsefunction,andtarget.

In a digital imagingsystem,the optical PSF
describesthe degreeto whichthe target imageis
blurredbecauseof the limits of diffractionin the
imagingoptics.Providedtheimagingopticsareshift
invariant,thenthelight intensitydistributionof the
imagef(x - Xo) is the convolution of g(x - xo) with
the PSF of the imaging optics, where g(x - Xo) is

the light intensity distribution of the truc target and
Xo is the location of the centroid of the distribution.

(Scc pp. 335 and 336 of ref. 11.)

Because the optics tend to blur, or smear out

the image of the target, the PSF has an inverse
effect on the Fourier transform of the image. That

is, the Fourier transform of the blurred image is
narrower than the Fourier transform of the true

image of the target. For this reason, as shown in
references 4 and 6 to 8, the systematic error in

centroid estimation, or image reconstruction, due to

undersampling decreases as the width of the PSF of

the imaging system increases.

Similarly, the pixel response fimction r(x) spreads

the sampled image distribution. This spreading is

shown in equation (4), where r(x) is convotved with

f(x), or equivalently in equation (6), where F(_)
is multiplied by R(_). For the linear CCD array

detector that was used to generate the experimental

results discussed in this paper, the width of the pixel

response function is approximately equal to 0.8xs.

The size of the target also affects the amplitude

of the undersampling error. Typically, the larger the

target relative to the sample spacing, the smaller
the systematic error. However, the amplitude of the

undersampling error does not decrease monotonically

with increasing target width. Rather, for a fixed pixel
response function, if the amplitude of the error is

plotted as a function of target size, then the resulting

graph shows this amplitude to bc modulated period-

ically with target size (refs. 5 and 8). This period-
icity can be understood by looking at the graphs of

figure 7, wherein simulated functions f(x) and F(_)

are plotted for two different target widths, xs and 4xs

(uniform amplitude). The PSF (fig. 7 (a)) is assumed
to be of the form

PSF(x) = exp -7: _ (7)

As is evident in the graphs of figures 7(b) to 7(d), if
the target is uniform in intensity and has sharp dis-

continuities at the edges, then the Fourier transform

of the true target image looks like a sine function

(fig. 7(d)). As the width of the target changes for a
fixed PSF and pixel response function, the side lobes

move relative to zero frequency. For some target sizes
and PSF's, F(_) and Ft(_) are zero; for others, F'(_)

is between zero and a peak of the side lobes. The

result of this is that the amplitude of the sinusoidal
error as a function of target size is modulated in a

periodic fashion that is determined by the ratio of

the width of the target to the sample spacing.

Centroid-Estimation Error for Sampled and Windowed Function

From equation (2), the estinmte of the centroid of the sampled and windowed function fSW(X) is

F w(0)
_SW -- _ 27:iFsw (0)

(8)

With the systematic error ec defined as the difference between 2 and 2Sw, then from equations (2) and (8)

1

ec = • - _SW 27_i
"F'(0) F_W(0)

F(O) Fsw(O)
(9)



Substitutingequation(5) for FSW(_ ) yields

2rci

oo

F'(_) (d/d_) n=-_oE FRw(_-(n/xs))"

O0

F(_) __, FRW (_ - (n/xs))
rt_--oo _=0

(10)

Using the approach introduced in reference 7, and assuming that the distribution of the target image is an

even function about a point that is shifted an amount Xc with respect to the sampling grid, results in

f(x)=f_(x- Xc)

and

F(_) = exp(-27rixc_)Fe(_)

Carrying this analysis further, the effect of the window on thc Fourier transform F(_) is, as shown by

equation (6), a convolution of the Fourier transform of the window function W(_) with F(_), or

?FRI v = F * W = [exp(-27rixc_)Fe] * W = exp(-27rixc_)Fc(71)W(_ - _7) dT?
O(3

(11)

To see the effect of the window on the error ec, we return now to equation (10) and solve for Fhw(_ ) using

equation (11) and the following relationship:

? FTO?)H(_ - rl) d_ = T(_ - _?)HO? ) &7
O0 (:X?

This yields

FRW(_ ) = exp [-2rrixc(_ - r/)] Fe(_ - rl)W01) d_
Oc

and

F_w(_) = exp [-2_iXc(_ - ,)] _(_ - ,)W(,) d,
(X)

= -2rCiXc exp [-21rixc(( - r])] Fe(( - 77)W(,) &?
OC

F+ exp[-27rixc(_ - _?)]Fe_(_ - 77)W(_]) d_

Plugging these values for FRW(_ ) and ' =F'RW(( ) into equation (10), setting _ 0, and cancelling like terms in
the numerator and denominator leaves

1 E exp {-27rix_[-rl - (n/x_)]} [r'_[- v - (n/x_)lW(rl) dv
6c = n=-oc (12)

D,= --,f)O

If we assume that the window is an odd number of pixels, then W(_) is an even function. YSlrthermore, if

one makes the assumption that the pixd response function is symmetric about the center of the pixel, then



R(_) is also an even function. Rearranging terms in the numerator and denominator of equation (12) and
realizing that Fe_ is an odd function yields

_ _ //
1 -f-_ sin(2_rxc_)Fle(r_)I4"_e(r_) d'l + 2 n_= 1 {f_c¢ sin(27rxcl_)F_e(p)We[(n/xs) _ p] d#

= ---_ .... _ ....... (13)
ec -_ f___ eos(27rXcq)Fe(rl)Wc(n) dv + 2 E f°oc cos(2CrXcl_)Fe(#)We[(n/xs) - #1 d#

n=l _ /

where

and

/_)C cos(27rxcp)_'_(#)Wc(#) dp = 0
0(2

d, = 0

because the integral of an odd function times an even function evaluated over even limits is zero. The first

integral in the denominator of equation (13) is generally much larger than the second integral, and therefore

1

- f_x; sin(2;rxd/)Fe_07)W_(r/) d_+ 2 _ {f_sin(2;rzd_)_'_(#)We[(n/zs)- #] d#}dv
(14)

When the window is large, We(f) --_ 5(4) and equation (14) reduces to

_C

O0

sin(27rxcn/xs)Tr_(n/xs)
ln=l

Because of the frequency cutoff of the optics, the n = 1 term dominates. Thus, the form of the systematic

error in this case is sinusoidal with an amplitude proportional to Fre(1/xs ).

However, when the width of the window is approximately the same as the width of the image distribution,

the convolution integrals of equation (14) spread each of the individual FRW spectra and terms higher than

the first become significant. As a result, the form of the subpixel error changes from a pure sinusoid to one

period of a sawtooth plot (fig. 8). The sawtooth form corresponds to the systematic error that arises because of

truncation of the signal. The amplitude of this error is now a function of the width of the window in addition

to the widths of the pixel response function, the PSF, and the target.

A simulation was constructed to study the relationship between the shape and width of the window and

the systematic error in centroid estimation. In all the simulations discussed herein, the target was assumed to

be a point source, the PSF was assumed to be that given in equation (7), and the pixcl response function was

assumed to be uniform and of width Xs. Two different-shaped windows were simulated: (1) a uniform window,

defined by

1 (xp-Nxs<X<xp+Nxs forN=l,2,...)w(x) = 0 (Otherwise)

and (2) a Gaussian-shaped window defined by

(xp- 2Nxs < x < Xp + 2Nxs for N = 1,2,...)

(Otherwise)

where Xp is the pixel location of the peak signal. The functions w(x) and corresponding Fourier transform

W(_) for the uniform and Gaussian-shaped windows are shown for comparison purposes in figure 9. Note that

the Fourier transforms for both windows have a zero at approximately the same location. The width of the

6
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Gaussian-shaped window has been chosen to provide a similar shape in frequency space to that of the uniform

window. In addition, the error due to undersampling has been made negligibly small. Provided b _> 1.25xs,

which was true for the cases that were simulated, the maximum error due to undersampling is less than 0.002

times the pixel spacing.

In figure 10, the simulation results show the predicted peak amplitude of the subpixel systematic error as

a function of the ratio N/b for the two different-shaped windows. These results show that using a Gaussian-

shaped window reduces the systematic error. The systematic error due to windowing goes to zero with the

Gaussian-shaped window for values of N/b greater than approximately 1.0 and with the uniform window for

values of N/b greater than approximately 2.5.

Effects of Window Size and Shape on

Noise-Induced Error

In order to understand the effects of window size

and shape on centroid-estimation error in the pres-
ence of noise, a simulation was constructed. Two
different noise models were simulated. In one, the
noise was modelled as a mean zero Gaussian ran-

dom variable, independent of signal amplitude and

indePen_den t for each pixel along the array. In the
other, the noise was modelled as being proportional

to the square root of the signal amplitude, where the

proportionality factor was modelled as a mean zero
Gaussian random variable. The reasons for selecting

these two noise models are the following. Often in

imaging applications the target signal is small rela-

tive to the background light, and the noise is con-
sidered to bc background limited photon shot noise

(BLIP). This case is simulated by the noise model
in which the noise is independent of the signal and

independent pixel to pixel. The other case closely

approximates the characteristics of the sensor noise
in the OMS.

Equation (7) was used to mathematically model
the PSF of the optics. The source was modelled as a
delta function with a peak signal of 1.0. A constant

background signal was added to the target signal

prior to addition of the noise. When the centroid was
estimated, the values at the endpoints of the window

were averaged, and this average value was subtracted
from each signal value. This process simulated the

threshold technique that is used on the OMS.

Simulations were run to determine the subpixel
bias error and the standard deviation of the signal

at any single subpixel position. To calculate the bias

error, an-i@5iage ccntroid estimate was calculated at
each subpixet position and subtracted from the truc

centroid location. The average centroid estimate was
taken to be the mean of 25 samples. The standard

deviation of the centroid estimate at each subpixel
location was also calculated.

The results of this simulation analysis are shown

in figures 11 to 13. In figures ll(a) to ll(d), the av-
erage error over a single pixel is plotted as a function

of xc for representative samples of each combination
of noise model and window shape. In figures 12(a)

and 12(b), the rms value of the bias error over a sin-
gle pixel is plotted as a function of the ratio N/b for

the uniform window and the Gaussian-shaped win-

dow with the pixel-to-pixel noise independent. The

rms error over the range -0.5 < Xc < 0.5 is defined
as

1 Prms = _ E(True centroid - Predicted centroid) 2
n=t

where P is the total number of subpixel positions.

In figures 12(c) and 12(d), similar plots are shown

for the noise proportional to the square root of the

signal amplitude. The different points correspond to
different values of SNR in figures 12(a) and 12(b),
where the SNR is defined as

SNR =
Peak signal

Standard deviation of background signal

and to different standard deviations of the propor-

tionality factor in figurcs 12(c) and 12(d). Fig-

ure 13(a) presents the standard deviations of the
ccntroid estimates at single subpixel locations as a
flmction of the SNR for the uniform and Gaussian-

shaped windows and noise independent of signal am-

plitude. In figure 13(b), similar graphs are shown for
the uniform and Gaussian-shaped windows and noise

proportional to the square root of signal amplitude.

Four things become apparent from the simula-

tion results, the first of which has been known for

some time: (1) in the presence of noise, the standard

deviation of the subpixel centroid estimate increases

with increasing window size, no matter what the win-
dow shape or noise model; (2) the optimum window

size, that is, the window size that minimizes both the
bias error and thc standard deviation of the centroid

7



estimate,is a functionof the SNRand the noise
model;(3) theoptimumwindowshapeis a function
of tim noisemodel;and (4) the subpixelbiaserror
tendstowardthesawtoothshapeassociatedwith the
systematictruncationerrorwhenthe noiseis pro-
portionalto thesignal.Forboth noisemodels,the
rmsvalueof thebiaserrorincreasesat aslowerrate
for the Gaussian-shapedwindowthan for the uni-
formwindow.However,themagnitudeof thiserror
isgreaterfor the Gaussian-shapedwindowthan for
the uniformwindowwhenthe noiseis proportional
to thesquarerootof thesignalamplitude;theerror
magnitudefor the Gaussian-shapedwindowis less
thanthat for tileuniformwindowwhenthepixel-to-
pixcl noiseis independentandmeanzeroGaussian.
It followsfrom this that in orderto determinean
optimumwindowsize(andshape)for point target
tracking,theSNRandnoiseprocessmustbeknown.

Experimental Results

Experimentswererun to verify the resultspre-
dictedbysimulation.A singlecamerawasmounted
directlyoveranLED target.Thetargetwasmoved
over+0.05 in. in the object plane in 0.0025-in. steps

using a computer-controlled linear stage and imaged

with the Camera (fig. 14). The displacement of the
stage was measured using a laser interferometer to

approximately 0.0001 in. Since the magnification fac-

tor for the camera was approximately 0.1, it was pos-
sible to resolve the displacement of the target in the

image plane to better than 1/20of a pixcl. The cen-

troid of the projected target image was calculated
as the average of the ccntroid estimates obtained for

100 target images acquired at each location of the

stage. A straight line was fit through the average cen-

troid estimates as a function of tile measured stage
position. The bias error was then determined to be

tile difference between the straight-line fit and the
average centroid estimate at each location.

Figures 15(a) and 15(t)) show the bias errors for

a uniform window and a Gaussian-shaped window.

In figure 15(a) (for the uniform window), the larger
amplitude error corresponds to N = 4 and the

smaller amplitude error corresponds to N = 6. In

figure 15(b) (for the Gaussian-shaped window), the
larger amplitude error corresponds to N = 5 and

the smaller amplitude error corresponds to N = 15.
The image distribution for which the centroid was

estimated is that shown in figure 16 and was the same

for all N. Assuming a point target, the half-width

of the distribution shown in figure 16 corresponds to

b _ 6.0. The jitter that is apparent in the data is

the result of the noise model and the thresholding
technique discussed previously.

In order to determine the relationship between

the signal SNR, window size and shape, and accu-
racy, the experiment described above was repeated

for different sensor integration times. Figure 17

presents the rms values of the bias error (over 9 cy-

cles) for different SNR's and window widths. Fig-
ure 17(a) shows the results obtained with a uniform

window, and figure 17(b) shows the results obtained
with a Gaussian-shaped window.

In addition to the bias error, the standard de-

viation of the centroid estimate at a single position
of the stage was measured. These results are shown
in figure 18. As expected, the standard deviation of

the centroid estimate increases with increasing win-
dow size. The increase in the standard deviation

again at small window sizes is believed to result from

thresholding. As the window size decreases to the

point where the signal is truncated, those pixels at ei-

ther edge of the window have greater noise associated

with them. When the threshold is set as the average
of the signals from these two pixels and subtracted
from the signal at each pixel Within the window, the
random error in the estimate of the centroid is in-

creased. Therefore, the variation from sample to
sample increases.

From the above results, the uniform window

shape is optimuin for centroid estimation in the op-
tical tracking system. Furthermore, N/b _ 1.5 is the

optimum ratio of window width to width of the target
image distribution for SNR's from about 50 to 100.

This ratio of window size to distribution width pro-

vides the minimum total error, where the total crror
is the sum of the rms value of the bias error and thc
standard deviation of the centroid estimate.

Centroid-Estimation Algorithm

A flowchart of the centroid-estimation algorithm
is shown in figure 19. The subpixel centroid estimate

is calculated iii the following way.During tracking, a
search is made for the peak pixel location of each tar-

get prior to computation of the centroid. The pixel
location of peak light intensity is stored and used

to set up a window of 81 pixcls centered about the

peak. Each pixel has a slightly different response,

that is, a slightly different gain and zero point. Prior

to computation of the centroid, the values of light
intensity are corrected for pixel nonuniform respon-

sivity and the background light level is subtracted
for pixels falling within the window. A second coarse

search for the peak intensity is then performed over

the corrected light intensity values.

Before the centroid is estimated, tile width of the

distribution is determined by computing the secomt



momentofthetargetimagedistribution.Thesecond
momentis calculatedas

Xp+15

E
n=xp- 15 _g2

xp +15

E I(n)
n=Xp-- 15

where • is the centroid of the distribution calculated

over 4-15 pixels centered about the peak, I(n) is the

digital value of the light intensity for pixel n, and Xp

is the pixel location of the peak signal.

The value of N used in the centroid calculation

is equal to the nearest integer value of the second

moment e plus one pixel. The subpixel centroid
estimate is calculated as

xp+N

r_=xp-N

"Xsw _ xp+N

E
n=xp-N

Figure 20 shows the subpixel bias error from the use

of the eentroid-estimation algorithm that adjusts the
window size; the window shape is uniform. Figure 21
shows the standard deviations of the centroid esti-

mate for a uniform window of variable width and

a uniform window with a fixed width of N = 14.

The value of N = 14 was chosen as the size required

to minimize the systematic error for the maximum

signal obtained during tracking with the OMS. The

maximum signal has an SNR of approximately 200.

Adjusting the window size to match the width of the
distribution minimizes the systematic error as well as
the standard deviation of the centroid estimate over

a wider range of SNR's than does using a window of
fixed size.

Conclusions

The effects of window size and shape on the ac-

curacy of subpixel ecntroid estimation have been
presented. Two different noise models and win-

dow shapes have bccn studied. The shapes include
a uniform window and a Gaussian-shapcd window.
The noise models studied include random mean zero

Gaussian, independent pixel to pixel and indepen-

dent of signal amplitude, and noise proportional to

the square root of the signal amplitude.

Fourier analysis has been used to determine the

form and magnitude of the systematic error due

to windowing. It has been shown that the form
of the subpixel error due to windowing resembles

one period of a sawtooth compared with the pure
sinusoidal waveform that is obtained when the signal

is undersampled. Furthermore, it has been shown

that the magnitude of this systematic error is smaller
for a Gaussian-shaped window than for a uniform

window.

Simulations have been run to explore the sensitiv-

ity of the centroid-estimation algorithm to window

size and shape in the presence of noise and to deter-
mine the window shape and size that minimize the

error. Experiments have been conducted to verify

the behavior predicted by simulation. The results of

the simulations and experiments revealed the follow-

ing: (1) for noise that is proportional to the square

root of the signal amplitude, the optimum window

shape is uniform, and for noise that is independent
of signal amplitude, with a low ratio of peak signal to

standard deviation of background signal (SNR), the

optimum window shape is Gaussian; and (2) match-

ing the size of the window to the width of the target

image distribution improves the accuracy of the cen-
troid estimate for both noise models and both win-

dow shapes. The optimum ratio of window width

to width of the target distribution is approximately
1.5 for the uniform window and noise proportional to

signal amplitude.

The results of the analysis have been used to de-

velop a new centroid-cstimation algorithm that in-

creases the accuracy of subpixel eentroid estimation

of (nearly) point target images when the noise is pro-
portional to signal amplitude and the signal ampli-
tude and shape vary from frame to frame. In the al-

gorithm, the width of the data window is matched to
the estimated width of the image distribution. Cal-

culating the eentroid over a window that is matched
in size to the width of the distribution yields a sub-

pixel centroid estiinate with smaller total error over
a wider range of SNR's than that from a calculation
with a window of fixed size. This improvement in

eentroid estimation has been developed for a point

target tracking system in order to increase the dy-

namic range of the system.

NASA Langley Research Center
Hampton, VA 23681-0001
June 22, 1993
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Figure 1. Optical measurement system (OMS) of large gap magnetic suspension system (LGMSS).
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Figure 2. Levitated cylinder with locations of eight LED targets.
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